Offshore Wind Energy in Maryland – Renewable Portfolio Standard Set-Asides v. Feed-in Tariffs

By Anna Binau

I. Introduction

On April 9, 2012, three students, one from the University of Maryland at College Park and two from St. Mary’s College of Maryland, were arrested for blocking “the front steps of the Maryland State House in protest of the expected failure of a bill to spur development of offshore wind power.”\(^1\) The bill at issue specifically encouraged the development of offshore wind power through the establishment of an offshore wind set-aside within Maryland’s existing Renewable Portfolio Standard (RPS). A RPS set-aside alone is not the optimal solution. Rather, Maryland’s best approach to promote offshore wind projects, legally and economically, is to adopt both an offshore wind set-aside and a Feed-in Tariff (FIT). Legally, Maryland would need both programs because a FIT alone would not comply with federal law. Economically, Maryland would benefit from both programs because a FIT can be structured to provide income sufficient to cover the higher costs of an offshore wind project.

Part II of the paper will describe Maryland Governor Martin O’Malley’s offshore wind bills. This part will contrast the bill Governor O’Malley presented to the Maryland Legislature in 2012 with the bill that failed to pass in the 2011 legislative session. Part III will explain the meaning of a RPS, and more specifically, a RPS set-aside. Part IV will then define FITs, examine their design features, and discuss existing FITs. Part V will provide a side-by-side

comparison of a RPS set-aside and a FIT in terms of their advantages, disadvantages, and legal limitations.

II. Maryland Offshore Wind Proposals

A. Maryland Offshore Wind Energy Act of 2011

On February 11, 2011, Governor O’Malley introduced the Maryland Offshore Wind Energy Act of 2011. The 2011 bill required that public utilities enter into long-term agreements with wind power generation facilities located ten miles off the Mid-Atlantic coast to purchase between 400 to 600 megawatts (MW) of power for a period of twenty or more years. The higher costs of the offshore wind power would be passed on to customers in the form of a line-item charge on their monthly bills. The 2011 bill stalled in the Senate Finance Committee.

B. Maryland Offshore Wind Energy Act of 2012

The Maryland Offshore Wind Energy Act of 2012 faced a similar path as that of the 2011 bill. Governor O’Malley unveiled the 2012 offshore wind bill on January 23, 2012. The bill passed the Maryland House of Delegates on March 30, 2012. Like the 2011 bill, the 2012 bill stalled in the Senate Finance Committee. The chairman of the Senate Finance Committee refused to bring the measure to a vote before the General Assembly’s scheduled adjournment on

6 Davis, O’Malley to Submit, supra note 5; Michael Dresser, O’Malley to Unveil New Approach to Wind Power, THE BALTIMORE SUN, Jan. 23, 2012, at 2A.
April 9, 2012. Two special legislative sessions were held, but the bill was not on the agenda of either one.

Despite their similar paths, the 2012 bill is markedly different from the 2011 bill. Unlike the 2011 bill, the 2012 bill establishes an offshore wind energy set-aside within Maryland’s existing RPS program. Accordingly, the existing RPS program requires that electricity suppliers purchase twenty percent of the electricity they sell from renewable sources by 2022. With the set-aside, 2.5 percent of the twenty percent renewable sourced electricity must be from offshore wind beginning in 2017. The offshore wind set-aside would be in addition to the existing solar set-aside.

The offshore wind set-aside is only imposed upon wholesale electricity suppliers if certain conditions are met. In order to determine whether the set-aside is warranted, the Maryland Public Service Commission (PSC) first hires an independent analyst to assess whether the costs to ratepayers would be outweighed by the potential benefits of offshore wind. The PSC also oversees a process by which offshore wind developers compete to become qualified.

8 Wagner et al., Clock, supra note 1.
13 See infra Part III.A
14 H.D. 441, supra note 10; S. 237, supra note 10; Davis, O’Malley to Submit, supra note 5; Dresser, supra note 6.
providers of offshore renewable energy credits.15 The electricity produced from offshore wind is then sold, along with accompanying renewable energy credits needed to meet Maryland’s RPS, at competitive prices.16 Bids are selected based on legislated criteria— including lowest price, long-term price stability, environmental and public health benefits, in-state jobs, and other factors.17 The set-aside is ultimately only imposed if the study shows that (1) an offshore wind program provides a net benefit to Maryland, and (2) the bids the PSC receives provide positive net benefits to the state and are priced below statutory safeguards for ratepayers.18

The statutory safeguards place restrictions on the increase in customer bills caused by the offshore wind projects. The additional costs of offshore wind projects would be factored into the rates charged to customers.19 In contrast to the offshore wind costs associated with the 2011 bill, the additional costs associated with the 2012 bill would not appear as a line-item surcharge on customer bills.20

Furthermore, under the original 2012 bill proposed by Governor O’Malley, the PSC could reject an offshore wind project if the project was expected to increase an average resident’s electricity rate by more than two dollars per month or any nonresidential customer’s rate by more than 2.5 percent.21 In negotiations with lawmakers, however, Governor O’Malley agreed to lower the maximum increase for residential customers to $1.50 and for nonresidential customers

16 Davis, O’Malley to Submit, supra note 5.
17 H.D. 441, supra note 10; S. 237, supra note 10; Maryland Offshore Wind Energy Act of 2012, supra note 15.
18 H.D. 441, supra note 10; S. 237, supra note 10; Maryland Offshore Wind Energy Act of 2012, supra note 15; Dresser, supra note 6.
19 Dresser, supra note 6.
20 Id.
to 1.5 percent.22 Additionally, under the 2012 bill, the residential and nonresidential customers’ rates would not be increased until electricity is actually being produced by the offshore wind projects, which is likely to be 2017 at the earliest.23 The increased rate would remain in place for twenty years.24

Governor O’Malley and other supporters of the 2012 bill argue that it will provide substantial benefits to Maryland. Offshore wind, for instance, is crucial to Maryland meeting its RPS goal of twenty percent by 2022.25 Governor O’Malley maintains that the 2012 bill will further his goal of having one-fifth of Maryland’s electricity supply come from in-state renewable sources by 2022.26 Administration officials believe the 2012 bill would support a wind farm of 40 turbines that would produce 200 megawatts annually, which is less than half of the megawatts sought with the 2011 bill.27 The bill would create 1,800 jobs in the construction phase of the offshore wind project and 360 permanent jobs once an offshore wind farm is fully operating.28 The 2012 bill would also increase electricity production and reduce air pollution.29 Governor O’Malley heralded the bill as a way to address a congestion problem on the region’s electricity grid,30 claiming that “wind power could feed into an offshore transmission line that would bring down congestion rates.”31

Opponents have criticized the bill on several grounds. Senate Republican leader E.J. Pipkin, for instance, said that both lawmakers and the public should have no faith that the rate

\begin{enumerate}
\item H.D. 441, supra note 10; Masters, Maryland House, supra note 7; Masters, Md. Offshore, supra note 22.
\item H.D. 441, supra note 10; S. 237, supra note 10; Dresser, supra note 6; Maryland Offshore Wind Energy Act of 2012 Testimony, supra note 22; Masters, Maryland House, supra note 7.
\item Masters, Maryland House, supra note 7.
\item James S. McGarry, Which Way Does the Wind Blow?, The Baltimore Sun, Feb. 10, 2012, at 19A.
\item Masters, Md. Offshore, supra note 22.
\item Masters, Maryland House, supra note 7.
\item Dresser, supra note 6; Davis, O’Malley to Submit, supra note 5; Davis & Masters, supra note 22.
\item Davis, O’Malley to Submit, supra note 5; Davis & Masters, supra note 22.
\item D’Alessandro, supra note 11.
\item Id.
\end{enumerate}
increases would be limited to two dollars. He said “the PSC—which is controlled by O’Malley appointees, including two who lobbied for offshore wind last year—could not objectively analyze the costs and benefits of offshore wind.” Moreover, some Republican and Democratic members of a Senate committee, before which O’Malley appeared to answer questions about the 2012 bill, commented that they were concerned the 2012 bill “would cost customers too much and leave too much power in the hands of regulators handpicked by O’Malley to structure the plan to guarantee a private developer a profit so that it can secure Wall Street financing.” Other members of the committee said that another two dollars seemed over the top in combination with other O’Malley proposals to raise income taxes, add a sales tax to gasoline purchases, and double the flush tax for homeowners, which is a stormwater fee. Opponents argue that the potential amount of electricity that could be produced from the offshore wind farm would do little to relieve the region’s grid congestion.

III. Renewable Portfolio Standard Set-Aside

This part contains two sections. Section A describes a typical state RPS program, including its design, mechanics, and purpose. Section B provides the purpose and definition of a RPS set-aside, while also discussing Maryland’s existing solar set-aside and how solar energy and offshore wind are similar.

A. RPS In General

32 Davis, O’Malley to Submit, supra note 5.
33 Id.
34 Davis & Masters, supra note 22.
36 D’Alessandro, supra note 11.
Under a RPS program, utilities or other retail electric providers are required to obtain a specific percentage of electricity supply from renewable energy sources. The definition of renewable energy source varies by state and the percentage requirement sometimes will increase over time. The percentage established is ordinarily greater than the current percentage of renewable energy. The percentage requirement is also typically accompanied by a legal mechanism for achieving it. States typically require every retail provider to have renewable energy credits (RECs) equal to a percentage of its annual sales. The utilities acquire the RECs by generating the renewable energy and the accompanying REC directly or by purchasing RECs from other suppliers. RPS programs are also known as quota systems, renewable obligations, renewable energy standards, or tradeable green certificate programs.

A REC certifies that a unit of electricity has been generated from a qualified renewable energy source. Each REC typically represents one megawatt hour of electricity generated by a renewable energy source. RECs can be sold along with, or separately from, the electricity used to create them. Thus, a qualified renewable energy source creates “two saleable products: (1)
the electricity, and (2) the RECs.47 The state certifies the credits, monitors for compliance, and imposes penalties when necessary.48

A RPS program is designed to stimulate competition among various renewable energy technologies.49 It allows the most economically attractive technology to win out.50 RPS programs have been criticized, however, for not yielding a significant diversity of renewable energy resources.51 Typically, wind power has been the primary renewable energy resource installed under a RPS program because a RPS stimulates investment in lower-cost and lower-risk technologies and discourages investment in higher cost technologies.52

B. RPS Set-Aside

In response to the criticism levied against RPS, many states have adopted RPS set-asides aimed at encouraging renewable energy diversity.53 States establish a RPS set-aside for a particular renewable energy technology that has been shut out of the market because of its higher costs.54 Under a RPS set-aside, a state requires that a certain percentage of the RPS be met with electricity generated from a particular renewable energy technology.55

Many states, including Maryland, have established a solar set-aside.56 Under the Maryland solar set-aside, electricity retail suppliers are currently required to obtain 0.06 percent

47\textit{Id.}
48Dernbach & Kakade, \textit{supra} note 40, at 16.
49\textit{Wiser et al.}, \textit{supra} note 44, at ii, 1.
50\textit{Id.}
51\textit{Id.} at ii; \textit{Wold et al.}, \textit{supra} note 38, at 842.
52\textit{Wiser et al.}, \textit{supra} note 44, at 4; \textit{Wold et al.}, \textit{supra} note 38, at 842.
53\textit{Wiser et al.}, \textit{supra} note 44, at ii, 2, 6; \textit{Wold et al.}, \textit{supra} note 38, at 842.
55Cory & Swezey, \textit{supra} note 55, at 11; \textit{Wold et al.}, \textit{supra} note 38, at 842.
56Cory & Swezey, \textit{supra} note 55, at 11, 24; \textit{Wiser et al.}, \textit{supra} note 44, at ii; \textit{Wold et al.}, \textit{supra} note 38, at 842.
of their total energy generation, and two percentage points of the twenty percent RPS by 2022, from solar power.\footnote{57}{Dresser, supra note 6; McGarry, supra note 26.}

Solar energy and offshore wind are alike in many ways. They both have higher up-front costs than onshore wind.\footnote{58}{CO& SWEZER, supra note 55, at 35; Ed Feo & Josh Ludmir, Challenges in Development and Financing of Offshore Wind Energy, 14 ROGER WILLIAMS U. L. REV. 672, 675, 677 (2009); Erica Schroeder, Turning Offshore Wind On, 98 CALIF. L. REV. 1631, 1641 (2010).} The additional cost for offshore turbines is the result of the specialized components, such as reinforced foundations to anchor the machines to the seafloor and the anti-corrosive features to withstand the damaging effects of the sea air and saltwater.\footnote{59}{Feo & Ludmir, supra note 59, at 674.}

The costs increase substantially the further offshore the turbines are placed and the deeper the water in which their foundations are laid.\footnote{60}{Id. at 675.}

Solar and offshore wind are also in a less mature state of commercial development than onshore wind.\footnote{61}{CO& SWEZER, supra note 55, at 35.}

while offshore wind farms have yet to be developed in the United States.\footnote{63}{Associated Press, US Pushing, supra note 63; Peter Asmus, Putting the Wind in Industry’s Sails, THE STAR-LEDGER (Newark), April 29, 2012.}

\textbf{IV. Feed-in Tariff}

This part contains three sections. Section A provides the purpose and definition of a FIT, and discusses the similarities between a FIT and the Maryland Offshore Wind Energy Act of 2011. Section B explains five particular features of a FIT. Finally, Section C describes the FIT programs in Germany, Ontario, and the United States.
A. FIT In General

The purpose of a FIT is to encourage renewable energy production by guaranteeing that renewable energy generators return a profit.\(^{64}\) A FIT requires electric utilities to enter into long-term power purchase agreements with renewable energy generators for electricity at a set price.\(^{65}\) The price is set at a level that will ensure the renewable energy generator receives a reasonable economic return on its investment.\(^{66}\) After the price is set, the additional costs are passed on to energy consumers by including the costs within the electricity rate charged customers.\(^{67}\) The term of the agreement is typically from five to thirty years.\(^{68}\) FITs are also called renewable energy payments.\(^{69}\)

A FIT is similar to the Maryland Offshore Wind Energy Act of 2011 in two ways. First, both require utilities to enter into long-term agreements with renewable energy generators. The 2011 Bill, for instance, requires the agreements to be made specifically with offshore wind power generation facilities. In addition, both pass the supplemental costs of renewable energy generation on to electricity customers. Specifically, FITs include the additional costs of

\[^{64}\text{John Perkins, Comment, Overcoming Jurisdictional to Feed-In Tariffs in the United States, 40 GOLDEN GATE U. L. REV. 97, 104 (2009).}\]

\[^{66}\text{David Grinlinton & LeRoy Paddock, The Role of Feed-In Tariffs in Supporting the Expansion of Solar Energy Production, 41 U. TOL. L. REV. 943, 944 (2010); Sato, supra note 66, at 480.}\]

\[^{68}\text{Ferrey, Sale, supra note 66, at 228; Ferrey, Restructuring, supra note 66, at 1007.}\]

\[^{69}\text{Sato, supra note 66, at 479.}\]
renewable energy generation within the rate charged to customers, whereas under the 2011 bill, the additional costs would have been included as a line-item charge on customer bills.

B. Design Features

A FIT can be designed in numerous ways. Accordingly, this section will focus on five of the more critical FIT design features: (1) payment level, (2) purchase obligation, (3) burden sharing, (4) forecast obligation, and (5) grid access.

1. Payment Level

Payment level refers to the price that utilities pay renewable energy generators for their electricity. The level has to be revised regularly to ensure that the FIT continues to serve its purpose of encouraging renewable energy production.\(^70\) There are two different methods to revising the payment level: (1) periodic revision and adjustment; and (2) capacity-dependent adjustment.\(^71\) With the first method, the payment level is revised on a set schedule either quarterly, annually, or on a multi-year basis.\(^72\) Under the capacity-dependent adjustment method, the payment level is revised depending on the amount of installed capacity.\(^73\)

There are five main approaches used to set the FIT payment level: (a) cost-based; (b) value-based; (c) fixed-price; (d) premium-price; and (e) auction-based.\(^74\)

a. Cost-Based

Under the cost-based approach, the FIT payment level is based on the actual cost of renewable energy generation plus a targeted return that is typically set by the legislature or regulators.\(^75\) Detailed market research and empirical analysis of current renewable energy costs

\(^70\) See MENDONCA, FEED-IN, supra note 68, at 92; KLEIN, supra note 68, at 25.
\(^71\) MENDONCA, FEED-IN, supra note 68, at 92; KLEIN, supra note 68, at 25.
\(^72\) COUTURE ET AL., supra note 66, at ix.
\(^73\) KLEIN, supra note 68, at 26.
\(^74\) COUTURE ET AL., supra note 66, at vi, vii, 7.
\(^75\) Id. at vi, 7; Steven Ferrey et al., Fire and Ice: World Renewable Energy and Carbon Control Mechanism Confront Constitutional Barriers, 20 DUKE ENVTL. L & POL’Y F. 125, 170-71 (2010); KLEIN, supra note 68, at 16; Dennis L.
are used to establish the payment level.76 This is the most commonly used approach in the European Union (EU).77

b. Value-Based

The value-based approach sets the FIT payment level by estimating the value, or quantifying the benefits, of renewable energy generation either to society or to the utility.78 The value to society includes the value of electricity plus climate change mitigation, health impacts, energy security, and other externalities.79 The value to the utility consists of avoided generation costs, and the time and location-specific value of electricity supply.80 This approach is also called the benefit-based or avoided external costs approach.81

c. Fixed-Price

Under the fixed-price approach, the FIT payment is set at a simple fixed price.82 The price is independent of costs or the market price and is constant over a fixed period.83 Renewable energy generators receive a certain amount of money per kilowatt hour of electricity generated.84

76 Arfmann et al., \textit{The Regulatory Future of Clean, Reliable Energy: Increasing Distributed Generation}, 40 COLO. LAW. 31, 38 (2011).

77 Id. at 8.

78 Couture et al., \textit{supra} note 66, at 7.

79 Id. at vi; Streich, \textit{supra} note 68, at 427; Arfmann et al., \textit{supra} note 76, at 38.

80 Couture et al., \textit{supra} note 6, at vi, 8.

81 Id. at vii, 8.

82 See Ferrey et al., \textit{Fire, supra} note 76, at 171; Klein, \textit{supra} note 68, at 16-17.

83 Couture et al., \textit{supra} note 66, at vii; Mendonca, \textit{Feed-In, supra} note 68, at 97; Klein, \textit{supra} note 68, at 48.

84 Id. at vii; Mendonca, \textit{Feed-In, supra} note 68, at 97; Klein, \textit{supra} note 68, at 48; J.P.M. Sijm, \textit{The Performance of Feed-in Tariffs to Promote Renewable Electricity in European Countries}, 2 OIL, GAS, & ENERGY L. 5, 6 (2004), http://www.ogel.org.

84 Klein, \textit{supra} note 68, at 48.
d. Premium-Priced

The payment level under the premium-priced approach is determined by adding a premium tariff to the market electricity price. The premium added can be either constant or sliding. The constant premium is a fixed predetermined adder. The sliding premium varies as a function of the market electricity price. For example, the premium may decline as the market electricity price increases.

e. Auction-Based

Under the auction-based approach, an auction is used to determine the FIT payment price. The price is established by the market and not administratively by the government. Variations of the auction-based approach are being introduced in Spain for solar energy and in China for solar and wind power. Additionally, California has adopted a variation of this approach for small-scale renewable generation facilities as to be discussed in section C.

2. Purchase Obligation

A purchase obligation is an obligation for electricity grid operators, energy supply companies, or electricity consumers to purchase all the power produced from a renewable energy generator. It is considered an important FIT feature because it assures investment security.

The purchase obligation is especially important for more variable renewable energy

85 COUTURE ET AL., supra note 66, at vii; Ferrey, Restructuring, supra note 66, at 1007; Ferrey et al., Fire, supra note 76, at 170-71; MENDONCA, FEED-IN, supra note 68, at 97; KLEIN, supra note 68, at 48.
86 COUTURE ET AL., supra note 66, at vii.
87 Id. at vii.
88 Id.; MENDONCA, FEED-IN, supra note 68, at 98.
89 COUTURE ET AL., supra note 66, at viii.
90 Id. at 8.
91 Id.
92 Id.
93 MENDONCA, FEED-IN, supra note 68, at 92; COUTURE ET AL., supra note 66, at viii; KLEIN, supra note 68, at 27; MIGUEL MENDONCA ET AL., POWERING THE GREEN ECONOMY: THE FEED-IN TARIFF HANDBOOK 29-30 (Earthscan 2010).
94 MENDONCA ET AL., POWERING, supra note 95, at 29.
technologies—such as wind—because the producer has no control over when the electricity is generated.95 Electricity is only generated when the wind is at optimal speeds.

3. Burden Sharing

Burden sharing is the financial mechanism whereby the additional costs associated with supporting renewable energy are equally distributed among all electricity consumers.96 The additional costs are included in the rate charged and are thus passed on to energy consumers.97

4. Forecast Obligation

The purpose of the forecast obligation is to help grid operators deal with the variable output of renewable energy technologies, such as wind.98 The forecast obligation requires the renewable energy generators to predict the amount of electricity that they plan to provide to the grid.99 If the actual electricity provided deviates up or down by a certain percentage from the amount predicted, then the operators are required to pay a penalty fee.100 The penalty provides an incentive to improve the accuracy of forecasts for renewable energy production.101

5. Grid Access

Grid access refers to the requirement that grid system operators immediately, and as a priority, connect plants generating electricity from renewable energy sources to the grid.102 This feature settles the uncertainties related to grid access and interconnection that renewable energy generators face.103

95 Id. at 30.
96 Id. at 28; MENDONCA, FEED-IN, supra note 68, at 100; KLEIN, supra note 68, at 63.
97 MENDONCA, FEED-IN, supra note 68, at 100; KLEIN, supra note 68, at 63; COUTURE ET AL., supra note 66, at ix-x.
98 COUTURE ET AL., supra note 66, at ix.
99 MENDONCA, FEED-IN, supra note 68, at 101; KLEIN, supra note 68, at 72.
100 MENDONCA, FEED-IN, supra note 68, at 101; KLEIN, supra note 68, at 72-73; COUTURE ET AL., supra note 66, at ix.
101 MENDONCA, FEED-IN, supra note 68, at 101; KLEIN, supra note 68, at 73; COUTURE ET AL., supra note 66, at ix.
102 MENDONCA ET AL., POWERING, supra note 95, at 30.
103 COUTURE ET AL., supra note 66, at 11.
C. Existing FITs

FITs are used in sixty-one countries along with twenty-six states and provinces worldwide.104 Twenty out of the twenty-seven EU member states use FITs.105 The following three sub-sections describe the FIT programs in Germany, Ontario, and the United States.

1. Germany

Germany is well-known for its FIT program. Having been established in 1990, it is the oldest FIT in the world.106 Originally, electric utilities were required to connect renewable energy generators to the grid and buy electricity at rates of sixty-five to ninety percent of the rate the utilities ultimately charged their customers.107 The payment level was based on a fixed percentage of the retail electricity price, which depended on the renewable energy technology and the project size.108 The generators were not required to enter into contracts with the utilities.109 Additionally, there was no guarantee that the payment would remain constant over a specific period.110

Germany’s FIT has since been amended three times: in 2000, 2004, and 2009.111 In 2000, it was changed to a cost-based approach whereby the payment was fixed for twenty years.112 In 2004, the cost-based approach was modified further to differentiate the payments

106 RAHM, supra note 43, at 142; MENDONCA ET AL., POWERING, supra note 95, at 80; Grinlinton & Paddock, supra note 67, at 949.

107 MENDONCA, FEED-IN, supra note 68, at 28; Bradley Motl, Comment, Reconciling German-Style Feed-in Tariffs with PURPA, 28 WIS. INT’L L.J. 742, 747 (2011).

108 COUTURE ET AL., supra note 66, at 9.

109 MENDONCA, FEED-IN, supra note 68, at 28.

110 MENDONCA ET AL., POWERING, supra note 95, at 80; Motl, supra note 109, at 748.

111 See MENDONCA, FEED-IN, supra note 68, at 30-36.

112 MENDONCA ET AL., POWERING, supra note 95, at 80; MENDONCA, FEED-IN, supra note 68, at 31; Streich, supra note 68, at 430; Motl, supra note 109, at 748; COUTURE ET AL., supra note 66, at 10; Sijm, supra note 85, at 9.
based on technology, location, and the size of renewable energy generation plants.113 The 2004 amendments were designed to encourage solar development.114 The 2004 Amendments can be deemed especially successful because Germany’s FIT has created the world’s largest solar energy market.115 However, Germany has recently reduced the level of payment provided for solar energy.116

Germany’s FIT has included some of the FIT design features discussed in section B. Specifically, Germany’s FIT has the purchase obligation, grid access, and burden sharing features.117 Additionally, Germany has established a FIT for offshore wind farms under which operators of offshore wind turbines receive more than operators of onshore wind turbines.118

2. Ontario, Canada

On October 1, 2009, Ontario enacted its first FIT for offshore wind farms.119 It adopted the fixed-price approach, setting the payment level at nineteen cents per kilowatt hour.120 The term of the FIT is twenty years.121

3. Programs in the United States

Vermont and California are the only states that have enacted and implemented a FIT.122 Several other states are proposing or experimenting with FIT programs.123

\begin{flushleft}
113 MENDONCA ET AL., POWERING, supra note 95, at 80.
114 Grinlinton & Paddock, supra note 67, at 949.
115 RAHM, supra note 43, at 142; Ferrey et al., Fire, supra note 76, at 171.
116 See German’s Solar Subsidy Cuts Go Deeper, Arrive Sooner Than Expected, CLIMATEWIRE (Feb. 24, 2012), http://www.eenews.net.
117 Streich, supra note 68, at 430; Motl, supra note 109, at 748; COUTURE ET AL., supra note 66, at 10; Sijm, supra note 85, at 9.
118 KLEIN, supra note 68, at 36; MENDONCA, FEED-IN, supra note 68, at 33, 35.
120 Id.
121 Id.
122 See Grinlinton & Paddock, supra note 67, at 969-72.
123 Id.; COUTURE ET AL., supra note 66, at 16.
\end{flushleft}
Vermont became the first state in the United States to implement a FIT in May 2009. It adopted the cost-based approach to establishing the payment level. The payment level will be revised periodically.

California has since followed Vermont and established a type of FIT program for small-scale renewable energy generation facilities. California’s three investor-owned utilities (IOUs) will hold biannual reverse auctions. Under the reverse auctions, the IOUs accept the lowest bid to build renewable energy projects. Through the auctions, the IOUs will buy renewable energy contracts of up to 20 megawatts in size until they collectively have bought a total of one gigawatt (1,000 MW). The FIT is designed to help utilities meet California’s RPS.

V. Comparison of RPS Set-Aside v. FIT

This part has two sections. In section A, the advantages and disadvantages of a RPS set-aside will be compared to those of a FIT. In terms of the RPS set-aside, the discussion will focus on solar set-asides. Section B provides the legal limitations of both a RPS set-aside and a FIT in terms of the United States Constitution and federal statutes.
A. Advantages and Disadvantages

A RPS set-aside and a FIT provide different degrees of certainty. A solar RPS set-aside provides “a degree of certainty that the RPS will result in the development of a certain amount of solar resources: a key ingredient to financing large-scale solar projects.” Thus, a RPS set-aside provides certainty as to quantity but leaves the price to be determined by the free market.

In contrast, a FIT provides certainty as to price and grid interconnection and lets the market determine quantity. A FIT provides stable prices, especially if a fixed-cost payment method is adopted. A FIT is more beneficial to investors because renewable energy investors care more about price than quantity. The investors require reliable information and predictable rates of return from the start of the financing process. Additionally, a grid access feature guarantees a developer interconnection to the grid.

A RPS set-aside and FIT also have different effects on renewable energy development. RPS set-asides spur only the growth of the technology to which it applies. Solar RPS set-asides have played a significant role in the recent growth of the United States solar market. Of the nine states that have active solar or distributed generation set-aside obligations in 2008, only three fully met their targets through the purchase of renewable energy or RECs. In contrast, FITs are superior in supporting less-mature technologies. FITs “encourage small-scale

132 CORY & SWEZEY, supra note 55, at 6.
134 MENDONCA ET AL., POWERING, supra note 95, at 152.
135 Id. at 160.
136 Ferrey et al., Fire, supra note 76, at 173.
137 WISER ET AL., supra note 44, at iii.
138 Id. at iii-iv.
139 Id. at 1.
renewables that are ignored by utilities in meeting their requirements under a RPS.140 FITs also foster more rapid renewable energy development.141

Furthermore, RPS set-asides and FITs entail different risks. A primary disadvantage of RPS set-asides is “the risk that they will put upward pressure on RPS compliance costs, if solar is more expensive than other sources of renewable generation.”142 With set-asides, there is a risk that they will make it more expensive for electricity providers to comply with a RPS, which will in turn make it more expensive for consumers. In contrast, FITs tend to lower the risks of higher electricity costs. FITs decrease investment risk by guaranteeing an investor a long-term contract at a secured price with a return on investment.143 The reduction of the investment risk helps to reduce the cost of capital used to finance renewable projects144 and ultimately reduces the cost of renewable electricity.145

With FITs, there is also a high risk that a particular FIT payment level will be either too high or to low.146 If payment levels are not adjusted over time and, as a result, the level is too high, then consumers will pay unnecessarily high prices for renewable energy.147 If the payment level is too low, then it will spark little or no new investment in renewable energy generation.148 Revising the payment level periodically, however, ensures that the payment level is in step with the market.

\begin{thebibliography}{100}
\bibitem{140} WOLD ET AL., \textit{supra} note 38, at 843.
\bibitem{141} Grinlinton & Paddock, \textit{supra} note 67, at 948; Jansen, \textit{supra} note 135, at 344; \textit{see also} MENDONCA, FEED-IN, \textit{supra} note 68, at 69.
\bibitem{142} CORY & SWEZEB, \textit{supra} note 55, at 6.
\bibitem{143} Ferrey et al., \textit{Fire, supra} note 76, at 172.
\bibitem{145} Grinlinton & Paddock, \textit{supra} note 67, at 948; RAHM, \textit{supra} note 43, at 143; Jansen, \textit{supra} note 135, at 346.
\bibitem{146} MENDONCA ET AL., \textit{POWERING, supra} note 95, at 62.
\bibitem{147} \textit{Id.; MENDONCA, FEED-IN, supra} note 68, at 13.
\bibitem{148} MENDONCA ET AL., \textit{POWERING, supra} note 95, at 62, COUTURE ET AL., \textit{supra} note 66, at 13.
\end{thebibliography}
B. Legal Limitations

This section addresses the legal limitations of RPS set-asides and FITs. The first subsection will address the constitutional challenges that RPS set-asides and FITs face. The second subsection examines whether RPS set-asides and FITs violate the Public Utility Regulatory Policies Act (PURPA).

1. Constitutional Challenges

A RPS set-aside could be challenged as violating the dormant Commerce Clause. Under the dormant Commerce Clause, states are prohibited from enacting laws that favor in-state businesses. If a statute favors local interests to the detriment of interstate commerce, a court will find the statute to be per se invalid. If the RPS program favors in-state renewable resources over out-of-state ones, then the RPS program would violate the dormant Commerce Clause and the RPS program, including the set-aside, would be invalid. Examples of such RPS programs include those that require that the RECs be created by in-state power generation or ban the export of RECs from the state.

For example, the Massachusetts RPS had two provisions that favored in-state renewable resources. First, it required long-term renewable energy contracts to be established with in-state generators. Secondly, the RPS program had a solar set-aside that mandated retail suppliers to buy a certain amount of the solar energy required under the RPS from in-state generators. A challenge was filed in April 2010 against the Massachusetts RPS program on

149 Fershee, supra note 43, at 82.
150 Ferrey, Threading, supra note 38, at 85.
151 Fershee, supra note 43, at 83.
152 Ferrey, Threading, supra note 38, at 92.
153 Fershee, supra note 43, at 83.
154 Id. at 83; Ferrey, Threading, supra note 38, at 92.
155 Fershee, supra note 43, at 83; Ferrey, Threading, supra note 38, at 92.
constitutional grounds but the case was settled without resolving the constitutionality of the two provisions.156

Additionally, if the RPS set-aside itself favors in-state renewable resources, like the Massachusetts RPS set-aside, it could be challenged as violating the dormant Commerce Clause. For further clarification, let us say, hypothetically, that the law establishing the Maryland RPS solar set-aside stated that 0.5 percent of the two percent solar RPS set-aside must be met by buying solar energy from Maryland generators. The Maryland solar set-aside could then face a dormant Commerce Clause challenge.

Like RPS set-asides, FITs are also vulnerable to constitutional challenges. A FIT could be challenged, for instance, as violating the Supremacy Clause of the United States Constitution.157 When a transaction is subject to exclusive federal jurisdiction and regulation, state regulation of the same transaction is preempted under the Supremacy Clause.158 Under the Federal Power Act (FPA), the Federal Energy Regulatory Commission (FERC) is entitled to regulate the rates, terms, and provisions of any wholesale sale or transmission of electricity in interstate commerce.159 Interstate commerce refers to transactions between states. All state regulation of wholesale interstate power transactions are preempted by FERC regulation.160 A RPS program does not involve the sale of power and therefore does not invoke problems under the FPA.161

A FIT intrudes into FERC jurisdiction in one of two ways. Under a FIT, a renewable energy generator’s sale is a wholesale sale because the generator is selling the energy for

156 Fershee, \textit{supra} note 43, at 83; Ferrey, \textit{Threading, supra} note 38, at 92.
158 Ferrey, \textit{Sale, supra} note 66, at 229.
159 \textit{Id.} at 229; Ferrey, \textit{New, supra} note 159, at 400; Ferrey et al., \textit{Fire, supra} note 76, at 180; Ferrey, \textit{Threading, supra} note 38, at 94.
160 Ferrey, \textit{Sale, supra} note 66, at 229; Ferrey et al., \textit{Fire, supra} note 76, at 180.
161 Ferrey, \textit{Threading, supra} note 38, at 86.
subsequent resale.162 If that renewable energy generator sells the energy to a retail electricity provider in another state, then FERC jurisdiction applies.163 Additionally, a FIT establishes a price for renewable power sale that is above the general wholesale price of power in the region.164 By carving out special treatment for the renewable wholesale power sale, the states intrude into an area reserved for FERC. Accordingly, such treatment is preempted by FERC regulation.165

However, PURPA carved out an exemption from FERC’s jurisdiction. Under PURPA, qualifying facilities (QFs) are not considered utilities and are therefore exempt from regulation under the FPA.166 QFs refer to cogenerators or small power production facilities that comply with FERC rules on fuel use, size, fuel efficiency, and reliability.167 A small power production facility is a generating facility of 80 megawatts of electricity or less whose primary energy source is hydro, wind, solar, biomass, waste, or geothermal resources.168 Under PURPA, states can establish rates for QFs and not intrude into FERC’s jurisdiction.169 Whether the FIT payment levels themselves violate PURPA is to be discussed in the next subsection.

2. PURPA

PURPA requires covered utilities to purchase electricity from QFs at the utility’s avoided cost.170 Under PURPA, no rule requiring a utility to purchase electricity from a QF can provide for a rate that exceeds the utility’s avoided costs.171 The avoided costs are the costs for both the electricity and the facilities that the purchasing utility would have incurred if it had purchased the

162 Perkins, supra note 65, at 106.
163 Id. at 106.
164 Ferrey, Sale, supra note 66, at 229.
165 Id. at 229.
166 Grinlinton & Paddock, supra note 67, at 960.
167 Id. at 960.
168 Id. at 960; Motl, supra note 109, at 753.
169 Grinlinton & Paddock, supra note 67, at 963.
170 Fershee, supra note 43, at 81.
171 Grinlinton & Paddock, supra note 67, at 963.
electricity from an alternative supplier, or it had generated the electricity itself by constructing its own facility.172 State regulators are responsible for determining the exact procedure for calculating a utility’s avoided cost.173 FERC provides states with a list of factors that should be used to calculate avoided cost.174

RPS programs that require utilities to buy renewable energy do not violate PURPA. They are considered non-rate mechanisms and therefore are not subject to the avoided cost PURPA restrictions on wholesale power sale prices.175

If the FIT payment level exceeds avoided cost, then the FIT may violate PURPA.176 The avoided costs are the cost of producing the same amount of electricity in the cheapest manner possible.177 The “utilities’ avoided costs are typically set based on the default set of generators, and are thus below that required to support more expensive renewable projects.”178 In order for a FIT designed to encourage renewable projects to be effective, it would have to be well above the utilities’ avoided costs.179

FERC’s four decisions on FITs and avoided costs provide information on how a FIT can comply with PURPA. In the mid-1990s, the California Public Utilities Commission (CPUC) ordered several utilities to establish long-term fixed-priced contracts with QFs.180 The utilities argued that the contract price exceeded avoided cost and requested that FERC void the order.181

\begin{itemize}
\item 172 MENDONCA, FEED-IN, supra note 68, at 26; Grinlinton & Paddock, supra note 67, at 960, 964; Christine Real de Azua, The Future of Wind Energy, 14 TUL. ENVTL. L.J. 485, 505 (2001); Perkins, supra note 65, at 104.
\item 173 Motl, supra note 109, at 761.
\item 174 Id. at 761.
\item 175 Id.
\item 176 Ferrey et al., Fire, supra note 76, at 194.
\item 177 Grinlinton & Paddock, supra note 67, at 964; Paul Savage et al., DC Microgrids: Benefits and Barriers in FROM SILOS TO SYSTEMS: ISSUES IN CLEAN ENERGY AND CLIMATE CHANGE A REPORT ON THE WORK OF THE REIL NETWORK 2008-2010 51, 65 (Yale School of Forestry and Environmental Studies 2010).
\item 178 Motl, supra note 109, at 753.
\item 179 Todd J. Griset, Harnessing the Ocean’s Power: Opportunities in Renewable Ocean Energy Resources, 16 OCEAN & COASTAL L.J. 395, 422 (2011).
\item 180 Ferrey, Restructuring, supra note 66, at 1008.
\item 181 S. Cal. Edison Co., 70 FERC ¶61,215, 61,666 (1995); Grinlinton & Paddock, supra note 67, at 964.
\end{itemize}
FERC ruled in 1995 that California’s program violated PURPA because, by limiting the competition for the contracts to QFs, the CPUC had excluded potential lower cost sellers from the competition and thus caused prices that exceeded avoided cost.182 In its decision, FERC stated that “[o]ur decision today does not, for example, preclude the possibility that, in setting an avoided cost rate, a state may account for environmental costs of all fuel sources included in an all source determination of avoided cost.”183 Under FERC’s decision, California could have included environmental costs in its definition of avoided costs if it had adopted uniform requirements that applied to all power generation facilities and included all the power generation facilities, not just QFs, in the avoided cost bidding process.184

FERC issued another decision in 1995 clarifying the meaning of environmental costs.185 FERC stated:

Thus, in setting avoided cost rates, a state may only account for costs which actually would be incurred by the utilities. A state may, through state action, influence what costs are incurred by the utility. . . . For example, a state may impose a tax or other charge on all generation produced by a particular fuel, and thus increase the costs which would be incurred by utilities in building and operating plants that use that fuel. . . . A state, however, may not set avoided cost rates or otherwise adjust the bids of potential suppliers by imposing environmental adders or subtractors that are not based on real costs that would be incurred by utilities.186

Thus, according to FERC, environmental costs can only include costs, like taxes, that a utility actually incurs.

In July 2010, a FIT was once again the focus of a FERC decision. At issue in FERC’s July 2010 decision was California’s FIT program for combined heat and power generators (CHPs). The program required each IOU in California to file with the CPUC a FIT under which

\begin{flushright}
182 S. Cal. Edison Co., 70 FERC at ¶161,676; Grinlinton & Paddock, supra note 67, at 964.
183 S. Cal. Edison Co., 70 FERC at ¶61,676
184 Grinlinton & Paddock, supra note 67, at 964.
185 S. Cal. Edison Co., 71 FERC ¶61,269 (1995); Grinlinton & Paddock, supra note 67, at 965;
186 S. Cal. Edison Co., 71 FERC at ¶62,080.
\end{flushright}
the IOU offered to buy electricity generated by CHPs (whose capacity does not exceed twenty megawatts) for ten years at a price set by the CPUC.187 The CPUC filed a petition to FERC for a declaratory order seeking approval of its orders specifying the prices that the IOUs must offer for the output of the CHP generators as an appropriate exercise of its authority.188 CPUC argued that the FITs were compatible with the FPA and PURPA because states have jurisdiction over the resource portfolios of utilities within their jurisdiction and the program only required that such utilities make an offer to buy power.189 Three affected IOUs filed a petition for a declaratory order seeking invalidation of the CPUC’s actions to set rates for wholesale sales of electricity as preempted by the FPA.190

In response to the petitions, FERC issued a number of orders. It held that the California FIT was permissible only with respect to the purchases of power from QFs and only when the set price that utilities are required to offer does not exceed the utility’s avoided cost.191 FERC declined to address whether the specific prices approved by the CPUC exceeded the California IOUs’ avoided cost rates because no petitioner had requested such a determination.192 As for non-QFs, FERC held that the FPA does not preempt the states from requiring IOUs to purchase

188 Yaffe et al., supra note 189, at 1-2.
190 Cal. Pub. Util. Comm’n, 132 FERC at ¶62,326, 61,329; Yaffe et al., \textit{supra} note 189, at 1-2; \textit{Report of the Electricity Regulation Committee}, supra note 188, at 316.
wholesale electricity from CHPs that are not QFs.193 However, FERC ruled the FPA preempted the states from specifying the wholesale price for such purchases.194

In response to FERC’s rulings, the CPUC requested clarification about its flexibility to establish avoided costs for specific renewable resource technology that it wanted to encourage.195 FERC provided the requested clarification in its October 21, 2010 order.196 FERC held that a multi-tiered avoided cost rate structure—whereby different levels of avoided costs are set for different types of resources—was consistent with PURPA.197 Under the avoided cost rate structure, the avoided cost rate for QFs that meet the state’s RPS can be different from the rate for QFs that do not.198 The reasoning was that where a state requires a utility to acquire a certain percentage of energy from generators with certain characteristics, those types of generators constitute the sources that are relevant for the utility avoided cost determination.199 Under FERC’s ruling, the avoided cost that a utility could be ordered to pay for a specific technology subject to a RPS set-aside would be the cost at which the particular purchasing utility could construct or purchase such power.200

194 Cal. Pub. Util. Comm’n, 132 FERC at ¶62,338; Yaffe et al., supra note 189, at 1-2; Report of the Electricity Regulation Committee, supra note 189, at 316.
195 Cal. Pub. Util. Comm’n, 133 FERC ¶61,059, 61,261 (2010); FERC Provides, supra note 191.
198 Franco et al., supra note 193, at 1.
199 Cal. Pub. Util. Comm’n, 133 FERC at ¶61,267; FERC Provides, supra note 191.
200 Ferrey, Sale, supra note 66, at 231.
VI. Conclusion

There are several issues involved in determining whether a RPS set-aside or a FIT is better for promoting offshore wind. The first issue is determining which approach best helps to provide the necessary funding for offshore wind power, especially when considering that offshore wind projects are more costly than onshore wind projects. These costs are compounded by the lack of experience and confidence in offshore wind projects as compared to onshore wind projects. The RPS set-aside does not generate sufficient income for the offshore wind project to be built. However, a FIT, which features both grid access and a purchase obligation, provides the necessary income by guaranteeing a price for a long period, access to the grid, and suppliers to buy the electricity.

The second major issue is whether either program would be legally barred. A RPS set-aside that favors in-state renewable energy generators could be challenged as violating the dormant Commerce Clause. Although the Maryland Offshore Wind Energy Act of 2012 does not explicitly state that the offshore wind RECs can only come from Maryland generators nor does it prohibit the export of RECs from Maryland, the set-aside established under the 2012 bill was designed specifically to subsidize an offshore wind project in Maryland. As such, it may constitute de facto discrimination, which arises when state law is factually neutral but its application nevertheless results in a disparity. For the offshore wind RPS set-aside to withstand constitutional challenge, it cannot favor in-state offshore wind projects on its face or as applied.

201 MENDONCA, FEED-IN, supra note 68, at 12.
202 Id. at 12-13.
203 Id. at 13.
A FIT can be challenged on both constitutional and statutory grounds. If the FIT establishes a wholesale price of renewable power for non-QFs, then the FIT program will be preempted by the FPA and challenged as violating the Supremacy Clause. If the FIT establishes a wholesale price for renewable power for QFs that exceeds the avoided cost, then the FIT program will be challenged as violating PURPA. Prior to FERC’s October 21, 2010 Order, establishing the payment level above the avoided cost was the only way to support the more costly offshore wind project. However, FERC’s October 21, 2010 Order allows states with offshore wind set-asides to establish a multi-tiered avoided cost rate structure that both complies with PURPA’s avoided cost requirement and makes the payment level sufficient to cover the additional costs of an offshore wind project.

A FIT can be used in the United States to complement the existing RPS programs. “The beauty of a complementary system comprised of an RPS and a [FIT] is that where one policy falls short, the other can fill the gap.” Having both a RPS set-aside and a FIT will provide certainty as to both the price and the amount of offshore wind power. The certainty will decrease investment risk even further than having only a FIT program. The RPS set-aside, in combination with the FIT, will spur growth and support the less-mature offshore wind technology. Accordingly, the best approach, both legally and economically, to promote offshore wind projects in Maryland is to propose legislation that adopts both an offshore wind set-aside and a FIT.

205 See Ferrey, Restructuring, supra note 66, at 1008.
206 Id.; Streich, supra note 68, at 448; Jansen, supra note 135, at 347.
207 Streich, supra note 68, at 448-49.